Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1.
نویسندگان
چکیده
Pseudomonas aeruginosa PAO1 was recently found to exhibit two remarkable physiological responses to oxidative stress: (1) a strong reduction in the efficiency of oxygen transfer from the gas phase into the liquid phase, thus causing oxygen limitation in the culture and (2) formation of a clear polysaccharide capsule on the cell surface. In this work, it has been shown that the iron concentration in the culture plays a crucial role in evoking these phenomena. The physiological responses of two P. aeruginosa PAO1 isolates (NCCB 2452 and ATCC 15692) were examined in growth media with varied iron concentrations. In a computer-controlled bioreactor cultivation system for controlled dissolved oxygen tension (pO2), a strong correlation between the exhaustion of iron and the onset of oxygen limitation was observed. The oxygen transfer rate of the culture, characterized by the volumetric oxygen transfer coefficient, kLa, significantly decreased under iron-limited conditions. The formation of alginate and capsule was more strongly affected by iron concentration than by oxygen concentration. The reduction of the oxygen transfer rate and the subsequent oxygen limitation triggered by iron deficiency may represent a new and efficient way for P. aeruginosa PAO1 to adapt to growth conditions of iron limitation. Furthermore, the secretion of proteins into the culture medium was strongly enhanced by iron limitation. The formation of the virulence factor elastase and the iron chelators pyoverdine and pyochelin also significantly increased under iron-limited conditions. These results have implications for lung infection of cystic fibrosis patients by P. aeruginosa in view of the prevalence of iron limitation at the site of infection and the respiratory failure leading to death.
منابع مشابه
Iron deficiency leads to blockage of oxygen transfer in culture of Pseudomonas aeruginosa PAO1
SUMMARY Pseudomonas aeruginosa PAO1 was recently reported to exhibit an unusual property of dramatically reducing the efficiency of oxygen transfer from the gas phase into the liquid phase and thus causing oxygen limitation in the culture. In this work, we show that iron concentration in the culture plays a crucial role in evoking this phenomenon. The physiological responses of two P. aeruginos...
متن کاملInhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids
Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...
متن کاملCharacterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa.
The expression of many virulence factors in Pseudomonas aeruginosa is dependent upon environmental conditions, including iron levels, oxygen, temperature, and osmolarity. The virulence of P. aeruginosa PAO1 is influenced by the iron- and oxygen-regulated gene encoding the alternative sigma factor PvdS, which is regulated through the ferric uptake regulator (Fur). We observed that overexpression...
متن کاملPseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume
Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1...
متن کاملBacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1.
In this study, we investigated the biotherapeutic potential of previously isolated quorum quenching (QQ) bacteria. Some of them produce and secrete small compounds that inhibit quorum sensing (QS), others quench QS by enzymatic degradation of N-acylhomoserine lactones (AHLs). The supernatant of cultures of these isolates was tested for inhibitory properties against P. aeruginosa PAO1 biofilms. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 149 Pt 9 شماره
صفحات -
تاریخ انتشار 2003